

Tetrahedron Letters 41 (2000) 2121-2124

TETRAHEDRON LETTERS

A new method for the synthesis of α-thio aldehydes and alcohols from aldehydes with one-carbon elongation

Tsuyoshi Satoh * and Ko-ichi Kubota

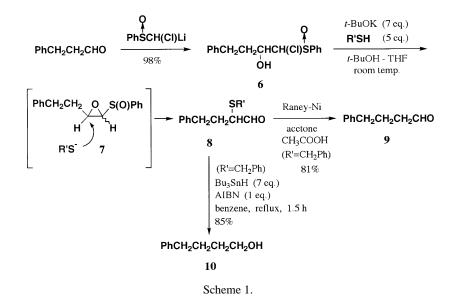
Department of Chemistry, Faculty of Sciences, Science University of Tokyo, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

Received 29 November 1999; revised 5 January 2000; accepted 7 January 2000

Abstract

A two-step and high-yield method for the synthesis of α -thio aldehydes from aldehydes with one-carbon elongation is realized by using chloromethyl phenyl sulfoxide as a one-carbon homologating agent. The α -thio aldehydes are easily converted to desulfurized alcohols with Bu₃SnH and AIBN in refluxing benzene in good yield. © 2000 Elsevier Science Ltd. All rights reserved.

The homologation of carbonyl compounds from lower carbonyl compounds by a carbon–carbon coupling reaction is an attractive way for obtaining the desired carbonyl compounds.¹ In addition, the produced carbonyl compounds are easily converted to other compounds useful in organic chemistry.


In our laboratory, we have reported some new methods for homologation of carbonyl compounds² by using aryl 1-haloalkyl sulfoxides as acyl anion equivalents.³ In continuation of our work, we report herein a new method for the synthesis of α -thio aldehydes **4** from aldehydes **1** with one-carbon elongation by using chloromethyl phenyl sulfoxide **2** as a one-carbon homologating agent. Moreover, the α -thio aldehydes **4** were easily reduced to one-carbon elongated desulfurized alcohols **5** in good yields.

One-carbon elongation of 3-phenylpropanal is described as a specific example (Scheme 1). Treatment of the lithium carbanion of chloromethyl phenyl sulfoxide with 3-phenylpropanal at -78° C gave the adduct **6** in quantitative yield as a diastereomeric mixture. In order to obtain the sulfinyloxirane **7**, we first treated **6** with several bases;⁴ however, because **7** was very unstable, all the attempts gave a complex mixture. Next, we tried in situ trap of this unstable **7** in the presence of a highly nucleophilic reagent (such as thiolate, selenolate, and amine). Thus, a solution of **6** in THF was added to a mixture of *t*-BuOK (7 equiv.) and benzenethiol (5 equiv.) in a mixture of *t*-BuOH–THF (2:1) at room temperature. Quite a rapid

^{*} Corresponding author.

^{0040-4039/00/\$ -} see front matter © 2000 Elsevier Science Ltd. All rights reserved. P11: S0040-4039(00)00087-3

reaction took place, and after 10 min the desired α -(phenylthio)aldehyde 8 (R'=Ph) was obtained in 73% yield (see Table 1, entry 1). This reaction is thought to proceed via a sulfinyloxirane 7.^{1d} We investigated this reaction with other thiols and found that alkyl thiols gave slightly better yield than benzenethiol. The best yield (93%) was obtained with benzyl mercaptan at 0°C (see Table 1, entries 2–4).

 α -Thio aldehydes themselves are very important compounds in organic synthesis;⁵ however, if the α -thio group can be reduced easily to hydrogen, these reactions offer a good method for homologation of aldehydes to one-carbon elongated aldehydes. To this end, reduction of the benzylthio group in **8** (R'=CH₂Ph) with Raney–Ni in EtOH under several conditions was investigated; this reaction, however, only gave a complex mixture. The reduction in acetone gave some amount of **9**; however, this reaction again usually gave a complex mixture. Finally, we found that the reduction was successful in acetone containing a few drops of acetic acid to give **9** in 81% yield. However, these conditions are still not ideal. Reproducibility of this reaction was variably poor.

As the desulfurization of the α -thio aldehyde was found to be rather difficult, we changed our target to a synthesis of one-carbon elongated alcohols **10**. After some investigation, reduction of **8** (R'=CH₂Ph) with excess tributyltin hydride in the presence of AIBN⁶ was found to be the conditions of choice. Reduction of **8** with 7 equiv. of tributyltin hydride with 1 equiv. of AIBN in refluxing benzene gave the desired alcohol in 85% yield (Scheme 1 and Table 1, entry 4).

Other representative examples are shown in Table 1, entries 6–12. Entries 1 and 6 show the results with *n*-alkyl aldehydes. Entries 7 and 8 show the results of the α -branched alkyl aldehydes. Entries 9 to 11 show the results with aromatic aldehydes and entry 12 shows the result with α , β -unsaturated aldehydes. The yields of the adducts **3** of all the aldehydes with the lithium carbanion of chloromethyl phenyl sulfoxide are very high (87–98%). The yields for the reaction with benzyl mercaptan in the presence of *t*-BuOK gave again excellent yields of the α -thio aldehydes to α -thio aldehydes.⁷

The reduction of the α -thio aldehydes 4 with Bu₃SnH was examined and the results are shown in Table 1. The yields of the reduction were shown to be somewhat variable. It is important to note that because the α -thio aldehyde in entry 12 was the α , β -(dibenzylthio)aldehyde the alcohol was saturated.

Table 1 One-carbon elongation of aldehydes to α -thio aldehydes and alcohols

F	асно —→ RCHCн он	0 I(CI)SPh 3	R'SH i	НСНО ——	DN -	СН₂ОН 5
Ent	ry RCHO	3	R'SH		4	5
Ent		(Yield / %)	a) cor	ditions	(Yield / %) ^{a)}	(Yield / %) ^{a)}
1	PhCH ₂ CH ₂ CHO	(98)	PhSH	r.t., 10 min	(73)	
2			∕_−ѕн	r.t., 10 min	(80)	
3			CH ₃ (CH ₃) ₃ SH	r.t., 20 min	(74)	
4			PhCH₂SH	0 °C, 20 min	(93)	(85)
5			HOOCCH₂SH	0 °C, 20 min	complex mix	
6	PhCH ₂ O(CH ₂) ₉ CHO	(94)	PhCH₂SH	0 °C, 20 min	(93)	(98)
7	СН3	(88)	PhCH₂SH	0 °C, 20 min	(95)	(98)
8	Сно	(87)	PhCH₂SH	0 °C, 20 min	(95)	(89)
9	СНО	(87)	PhCH₂SH	0 °C, 20 min	(89)	(82)
10	СНО	(98)	PhCH₂SH	0 °C, 45 min	(98)	(79)
11	СНО	(99)	PhCH ₂ SH	0 °C, 40 min	(98)	(91)
12	Ph	(98)	PhCH₂SH	0 °C, 20 min	(73) ^{b)}	Ph(CH ₂) ₄ OH (77)

a) Isolated yield after silica gel column chromatography.b) The product is 2,3-(dibenzylthio)-4-phenylbutanal.

We next applied the presented method to two-carbon elongation of aldehydes to α , β -dithio aldehydes 14 and alcohols 15. The overall process and the yields are shown in Scheme 2. All the reactions starting from 3-phenylpropanal gave over 90% yield and the overall yield was 76%. In contrast to this, the yields starting from 1-naphthaldehyde were good but not excellent, and the overall yield was reduced to 45%.

This work was supported by a Grant-in-Aid for Scientific Research No. 11640545 from the Ministry of Education, Science, Sports, and Culture, Japan, which is gratefully acknowledged.

RCI 1	PhSCH(CI)	LI 0H → RCHCHSPr CI 11	PhC	BuOK (7 eq.) C H₂SH (5 eq.) BuOH - THF	→ RCH	H₂Ph CHO .2	Q PhSCH(CI)Li
SCH₂Ph Q I RCHCHCH(CI)SPh OH 13		<i>t</i> -BuOK (7 eq.) PhCH₂SH (5 eq.) <i>t</i> -BuOH - THF	5 eq.) FCHCHCHO -		Bu ₃ SnH (11 eq.) AIBN (1 eq.) benzene, reflux 1.5 - 2.5 h		RCH ₂ CH ₂ CH ₂ OH
	 R	11	12	13	14	15	overall
	PhCH ₂ CH ₂ —	98%	93%	93%	95% ^{a)}	95%	76%
		98%	98%	79%	79%	75%	45%

a) A 2:3 diastereomeric mixture.

Scheme 2. Two-carbon elongation of aldehydes 1 to α,β -(dibenzylthio)aldehydes 14 and alcohols 15

References

- For reviews: (a) William Lever Jr., O. *Tetrahedron* 1976, *32*, 1943. (b) Martin, S. F. *Synthesis* 1979, 633. (c) Stowell, J. C. *Chem. Rev.* 1984, *84*, 409. (d) Satoh, T.; Yamakawa, K. *Synlett*, 1992, 455.
- (a) Satoh, T.; Hayashi, Y.; Mizu, Y.; Yamakawa, K. *Tetrahedron Lett.* **1992**, *47*, 7181. (b) Satoh, T.; Itoh, N.; Gengyo, K.; Yamakawa, K. *Tetrahedron Lett.* **1992**, *33*, 7543. (c) Satoh, T.; Motohashi, S.; Kimura, S.; Tokutake, N.; Yamakawa, K. *Tetrahedron Lett.* **1993**, *34*, 4823. (d) Satoh, T.; Hayashi, Y.; Mizu, Y.; Yamakawa, K. *Bull. Chem. Soc. Jpn.* **1994**, *67*, 1412. (e) Satoh, T.; Itoh, N.; Gengyo, K.; Takada, S.; Asakawa, N.; Yamani, Y.; Yamakawa, K. *Tetrahedron* **1994**, *50*, 11 839. (f) Satoh, T.; Mizu, Y.; Kawashima, T.; Yamakawa, K. *Tetrahedron* **1995**, *51*, 703. (g) Satoh, T.; Unno, H.; Mizu, Y.; Hayashi, Y. *Tetrahedron* **1997**, *53*, 7643. (h) Satoh, T.; Kurihara, T. *Tetrahedron Lett.* **1998**, *39*, 9215.
- 3. (a) Seebach, D. Angew. Chem., Int. Ed. Engl. 1979, 18, 239. (b) Hase, T. A. Umpoled Synthons; John Wiley and Sons: New York, 1987.
- 4. Satoh, K.; Kaneko, Y.; Izawa, T.; Sakata, K.; Yamakawa, K. Bull. Chem. Soc. Jpn. **1985**, 58, 1983. Satoh, T.; Kumagawa, T.; Sugimoto, A.; Yamakawa, K. Bull. Chem. Soc. Jpn. **1987**, 60, 301.
- 5. Trost, B. M. Chem. Rev. 1978, 78, 363.
- 6. Gutierrez, C. G.; Stringham, R. A.; Nitasaka, T.; Glasscock, K. G. J. Org. Chem. 1980, 45, 3393.
- Some other methods for synthesis of α-thio aldehydes from aldehydes with one-carbon elongation: (a) Sato, T.; Okazaki, H.; Otera, J.; Nozaki, H. J. Am. Chem. Soc. 1988, 110, 5209. (b) Makosza, M.; Sypniewski, M. Tetrahedron Lett. 1994, 35, 6141.